FAA Initiative to Address Noise Concerns of Santa Cruz/Santa Clara/San Mateo/San Francisco Counties

FAA & Select Committee Working Meeting

August 18, 2016
Discussion Overview

• Transition the SERFR STAR Back to the BSR Ground Track Prior to EPICK (#2)
• Improve Aircraft Set Up and Sequencing Between Facilities (#6)
2. Transition the SERFR STAR Back to the BSR Ground Track Prior to EPICK
Average altitude on the BSR (July 2014)

4,821 ft MSL
4,782 ft AGL

6,700 ft MSL
6,380 ft AGL

7,350 ft MSL
5,910 ft AGL

9,950 ft MSL
9,111 ft AGL

12,300 ft MSL
11,882 ft AGL

Maximum Terrain Elevation along BSR: 3,132 ft

Average altitude on the SERFR (July 2015)

4,460 ft MSL
4,421 ft AGL

6,150 ft MSL
5,700 ft AGL

6,860 ft MSL
5,610 ft AGL

9,260 ft MSL
8,145 ft AGL

11,370 ft MSL
11,195 ft AGL

Maximum Terrain Elevation along SERFR: 2,574 ft
Overview

• For this presentation:
  – The DAVYJ STAR is a notional look at optimizing an approach over the BSR ground track.
  – The altitudes of the optimized DAVYJ STAR are likely higher than the SERFR STAR, but lower than BSR STAR.
  – Fully optimized, DAVYJ is not contained within the current SFO Class B.
  – The OPD of the DAVYJ STAR would be wholly contained within the proposed amendment to SFO Class B.
Provisional Noise Analysis

• The noise levels of the notional DAVYJ were modelled consistent with current FAA Policy.
  – Traffic is based upon 60 random days from the past year
  – Takes into account terrain
  – The ~50% of SERFR flights which are vectored off the ground track were modelled using 4 distinct flight paths
  – Noise modelled of the current SERFR operations was compared against:
    • DAVYJ with SERFR altitudes
    • DAVYJ with BSR altitudes
Noise modelling of the current SERFR tracks

Key
- **SERFR ground track**
- **Notional DAVYJ ground track**

Noise levels:
- $x \geq 45$ dBA DNL
- $40$ dBA DNL $\leq x < 45$ dBA DNL
- $35$ dBA DNL $\leq x < 40$ dBA DNL
- $30$ dBA DNL $\leq x < 35$ dBA DNL
- $25$ dBA DNL $\leq x < 30$ dBA DNL
- $20$ dBA DNL $\leq x < 25$ dBA DNL
Noise modelling of the notional DAVYJ, with BSR altitudes (higher)
Noise modelling of the notional DAVYJ, with SERFR altitudes (lower)

Key
- **SERFR ground track**
- **Notional DAVYJ ground track**

Noise levels:
- **x ≥ 45 dBA DNL**
- **40 dBA DNL ≤ x < 45 dBA DNL**
- **35 dBA DNL ≤ x < 40 dBA DNL**
- **30 dBA DNL ≤ x < 35 dBA DNL**
- **25 dBA DNL ≤ x < 30 dBA DNL**
- **20 dBA DNL ≤ x < 25 dBA DNL**

Fingers model aircraft being vectored off the ground track.
Noise changes associated with notional DAVYJ, with SERFR altitudes

Key
- SERFR ground track
- Notional DAVYJ ground track

Change in Noise levels:
- Increase of 8 – 10 dBA DNL
- Increase of 5 – 7 dBA DNL
- Increase of 2 – 4 dBA DNL
- No change or a change of ± 1 dBA DNL
- Decrease of 2 - 4 dBA DNL
- Decrease of 5 - 7 dBA DNL
- Decrease of 8 – 10 dBA DNL
Summary

• Provisional Noise Analysis Results indicate:
  – The noise from the current SERFR tracks in the mid and south peninsula is the range of 25 – 44 dB DNL.
  – The noise shifts when the track is moved west.
  – Lower altitudes on the notional DAVYJ produces a larger noise footprint.
Noise modelling verses measuring
<table>
<thead>
<tr>
<th>Address</th>
<th>CNEL</th>
<th>SFO Santa Cruz Monitoring Report</th>
<th>NorCal EA 2014 values</th>
<th>NorCal EA 2019 values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1111 Wilderfield Rd, Los Gatos</td>
<td>38</td>
<td>Based on 16 days of data</td>
<td>40-41</td>
<td>41-42</td>
</tr>
<tr>
<td>2 200 Woodlander Place, Scotts Valley</td>
<td>38</td>
<td></td>
<td>38-39</td>
<td>39-40</td>
</tr>
<tr>
<td>3 1023 Vine Hill Road, Santa Cruz</td>
<td>35</td>
<td></td>
<td>37-38</td>
<td>38-39</td>
</tr>
<tr>
<td>4 240 Fast Lane, Santa Cruz</td>
<td>34</td>
<td></td>
<td>36-37</td>
<td>36-37</td>
</tr>
<tr>
<td>5 820 Amigo Road, Soquel</td>
<td>34</td>
<td></td>
<td>35-36</td>
<td>35-36</td>
</tr>
</tbody>
</table>

Figure 1 – Noise Monitoring Locations
6. Improve Aircraft Set Up and Sequencing Between Facilities
Set Up and Sequencing

• Currently, operations in terminal airspace involve turn-by-turn, speed-by-speed, and altitude-by-altitude instructions to the pilot.

• Terminal controllers rely heavily upon vectoring for merging and spacing aircraft onto the final approach course.

• Consequently, the benefits of Performance Based Navigation (PBN) procedures are not being achieved.
  – Benefits include reduced noise, emissions and flying miles.
Set Up and Sequencing

• **Terminal Sequencing and Spacing (TSS)**
  – Will reduce the number of course and altitude changes currently required for sequencing.
  – Will provide information to controllers about the speeds to assign for aircraft to achieve an OPD.
  – Will lessen the frequency of communications required between controllers and pilots.
Special Use Airspace (SUA)